Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 642
Filter
1.
Article | IMSEAR | ID: sea-225626

ABSTRACT

Background: Sodium mono glutamate (MSG), the sodium salt of glutamic acid, is a food flavoring agent that is widely used in many countries. Pomegranate is used as a traditional medication in numerous countries, it is planted in Asian countries, Mediterranean countries and the U.S.A. Aim of the work: The present study aimed to detect structural and functional changes in adult rat kidney tissue treated with sodium mono glutamate, and the possible protective effect of pomegranate on the kidney treated with MSG. Materials and Methods: This study was done by using 60 adult Wistar Albino rats of both sexes were divided into three equal groups: Group I (control group), Group II (sodium mono glutamate treated group), and Group III (combined MSG and pomegranate treated group) Doses were given once daily for 8 weeks every day. At the end of the treatment period, blood samples collected from each rat were used for measuring the values of urea and creatinine. Also animals of the different groups were sacrificed at the end of the experiment, quickly dissected and the kidneys were removed and stained with hematoxylin and eosin (H&E) for the histological examination by light microscopy, other tissue sections were evaluated using a transmission electron microscope. Both were used to examine the effect of sodium mono glutamate on cortex of the kidneys of albino rats ,compared with control group and the combined MSG and pomegranate group. Results: There was a major rise in blood urea level and blood creatinine level in sodium mono glutamate treated group in contrast to the control group. There was a significant reduction in blood urea level and blood creatinine level in combined sodium mono glutamate and pomegranate treated group in comparison to MSG treated group. Examination of kidney tissue of rats treated with sodium mono glutamate (Group. II) showed damaging changes of its structure. The glomerulus had markedly widened blood capillaries with thickened filtration membrane. The epithelial tubular cells had marked degenerative changes. Examination of rats kidney tissue treated with sodium mono glutamate and pomegranate (Group III) revealed improvement of the lesions in the glomeruli and renal tubules. Conclusion: Pomegranate protected the kidneys and restricted the histological and functional alterations caused by sodium mono glutamate, and thus, there is an advantage of usage of pomegranate with sodium mono glutamate.

2.
Int. j. morphol ; 41(1): 85-89, feb. 2023. ilus
Article in Spanish | LILACS | ID: biblio-1430538

ABSTRACT

Este estudio tuvo como objetivo demostrar la existencia de variaciones morfológicas en el tejido conectivo de la glándula submandibular de ratas obesas expuestas a glutamato monosódico (GMS). Se utilizaron 12 ratas Sprague Dawley machos recién nacidas (6 ratas para el grupo 1, control; 6 ratas para el grupo 2 (GMS), 4 mg/g de glutamato monosódico de peso (5 dosis) mantenidas por 16 semanas respectivamente con una dieta y agua ad libitum. En el estudio se realizó un análisis estereológico e histológico, demostrándose una variación en el tejido conectivo presentando una disminución del volúmen glandular, mayor fibrosis, y disminución de adipocitos a nivel periférico siendo reemplazado por tejido rico en colágeno. Los vasos sanguíneos observados a nivel estereológico no presentan mayores cambios en cuanto a volumen, superficie y área.


SUMMARY: This study aims to demonstrate the existence of morphological variations in the connective tissue of the submandibular gland of obese rats exposed to MSG. Twelve male newborn Sprague Dawley rats were used (6 rats for group 1, control; 6 rats for group 2 (MSG), 4 mg/g of monosodium glutamate of weight (5 doses) maintained for 16 weeks respectively with a diet and water ad libitum. In the study, a stereological and histological analysis was carried out, demonstrating a variation in the connective tissue, presenting a decrease in the glandular volume, greater fibrosis, and a decrease in adipocytes at the peripheral level, being replaced by tissue rich in collagen. Blood cells observed at the stereological level do not present major changes in terms of volume, surface and area, but in the histological study greater vascularization is observed.


Subject(s)
Animals , Male , Rats , Sodium Glutamate/administration & dosage , Submandibular Gland/drug effects , Obesity , Sodium Glutamate/pharmacology , Blood Vessels/drug effects , Body Weight , Fibrosis , Rats, Sprague-Dawley , Connective Tissue/drug effects , Animals, Newborn
3.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 127-132, 2023.
Article in Chinese | WPRIM | ID: wpr-992066

ABSTRACT

Objective:To investigate the neurobiochemical metabolites of caudate nucleus and thalamus in patients with obsessive-compulsive disorder and their relationship with obsessive-compulsive symptoms.Methods:From April 2019 to January 2022 in Beijing Anding Hospital, totally 25 untreated patients with obsessive-compulsive disorder were recruited, and 20 healthy controls matched with gender, age and educational background were recruited for the study.The maps of neurobiochemical metabolites of patients and normal controls were collected by hydrogen proton magnetic resonance spectroscopy.With bilateral caudate nucleus and thalamus as brain regions of interest.The relative concentrations of N-acetylaspartic acid (NAA), glutamic acid (Glu) and γ-aminobutyric acid (GABA) were fitted by LCModel software.At the same time, the clinical symptoms of patients were evaluated with Yale-Brown obsessive-compulsive scale (Y-BOCS) and Hamilton anxiety scale (HAMA). SPSS 20.0 software was used for statistical analysis.Independent double sample t-test was used to compare the differences of different nerve biochemical metabolite concentrations between patients with obsessive-compulsive disorders and healthy controls.Pearson correlation analysis was used to explore the correlation between biochemical metabolite concentrations and clinical symptoms. Results:The Glu concentration in the left thalamus of patients with obsessive-compulsive disorder (3.97±0.41) was higher than that of the control group (3.66±0.55)( t=-2.11, P<0.05), while the NAA concentration was (4.87±0.47)lower than that of the control group (5.15±0.44)( t=2.05, P<0.05). The GABA concentrations in the right caudate nucleus (0.50±0.18) and thalamus (0.80±0.19) were lower than those in the control group ((0.63±0.23), (0.96±0.24))( t=2.08, 2.36, both P<0.05). Pearson correlation analysis showed that the Glu concentration in the left caudate nucleus of patients with obsessive-compulsive disorder was positively correlated with the total score of Y-BOCS( r=0.46, P<0.05). Spearman correlation analysis showed that Glu concentration in the right caudate nucleus was positively correlated with the total score of HAMA in patients with obsessive-compulsive disorder ( r=0.46, P<0.05). Conclusion:NAA, Glu and GABA metabolism in caudate nucleus and thalamus are abnormal in patients with obsessive-compulsive disorder, and Glu concentration is positively correlated with the severity of obsessive-compulsive and anxiety symptoms.

4.
Malaysian Journal of Medicine and Health Sciences ; : 159-165, 2023.
Article in English | WPRIM | ID: wpr-997887

ABSTRACT

@#Introduction: The toxicity of high concentration monosodium glutamate (MSG) has become a controversial issue because of its inconsistent results in human and animal studies. This present study aims to evaluate the effect of subchronic high-doses oral administration of MSG on spatial memory performance and hippocampal pyramidal cells number. Methods: This study involved twenty-eight male Wistar rats, which were divided into a control group of NaCl 0.9% and three intervention groups of MSG 1.0 mg/g bodyweight (M1), 2.0 mg/g bodyweight (M2), and 4.0 mg/g bodyweight (M3) for 30 days. Statistical analysis used a One-way ANOVA test. Results: The result showed significant differences in spatial memory on the Morris Water Maze (MWM) test, including path length (p = 0.020) and escape latency (p = 0.011) according to general linear model repeated measurement analysis. The mean difference of estimated hippocampal pyramidal cells total number among the groups showed volume (p = 0.001), numerical density (p = 0.590), and cells number (p = 0.004). Furthermore, Post-Hoc analysis in both spatial memory and hippocampal pyramidal cells showed that the increasing MSG dose from 1.0 to 4.0 mg/g bodyweight led to a decrease in the results of spatial memory performance on the MWM test and a decrease in hippocampal cells. Conclusion: The present study has provided novel quantitative data that subchronic administration of high-dose MSG caused deleterious effects on the spatial memory function and the volume and number of hippocampal pyramidal cells.

5.
Journal of Traditional Chinese Medicine ; (12): 2125-2131, 2023.
Article in Chinese | WPRIM | ID: wpr-997271

ABSTRACT

ObjectiveTo explore the possible mechanism of Yudian Decoction (愈癫汤) in the treatment of schizophrenia. MethodTwenty male offspring from 5 normal female 17-day-pregnant SD rats were selected as blank group. Fifteen female 17-day-pregnant SD rats were injected intraperitoneally with methyl azomethine acetate (MAM) 25 mg/kg, and the male offspring simulated the neurodevelopmental abnormality to establish a rat model of schizophrenia. Sixty successfully-modeled rats were randomly divided into 20 rats in the model group, 20 rats in the Yudian Decoction group and 20 risperidone group. After 3 days of adaptive cage feeding, the rats in the Yudian Decoction group were gavaged with 1.54 g/(kg·d) of Yudian Decoction, the risperidone group was gavaged with 0.24 mg/(kg·d) of risperidone capsule, while the blank group and the model group were gavaged with 6.7 ml/(kg·d) of distilled water, once a day, for 14 consecutive days. Sample was collected on the day after the last gavage. The expression of glutamate receptor (GluR) and γ-aminobutyric acid receptor subunit α1 (GABAARα1)-positive neurons in the hippocampus and prefrontal cortex were detected by immunofluorescence, and the positive rate was calculated; the expression of small clear proteins (PVs) in the hippocampal CA1 region and the medial prefrontal cortex was detected by immunohistochemistry; The expression of glutamic acid decarboxylase 65 (GAD65) and glutamic acid decarboxylase 67 (GAD67) proteins and mRNAs in the hippocampus and prefrontal cortex were detected by immunoblotting and reverse transcription PCR. ResultCompared with the blank group, the positive rate of GluR in hippocampal area and prefrontal cortex of rats in the model group increased, the positive rate of GABAARα1 in hippocampal area decreased, the PV optical density value in hippocampal CA1 area and medial prefrontal cortex decreased, and the expression of GAD65, GAD67 proteins and mRNA in hippocampal area and prefrontal cortex decreased (P<0.05 or P<0.01). Compared with the model group, GluR positivity rate in hippocampus and prefrontal cortex of risperidone group and Yudian Decoction decreased, GABAARα1 positivity rate in hippocampus increased, PV optical density value in hippocampus CA1 area and medial prefrontal cortex increased, and GAD65, GAD67 proteins and mRNA expression in hippocampus and prefrontal cortex increased (P<0.05 or P<0.01). Compared with the risperidone group, the positive rate of GluR in hippocampus and prefrontal cortex and GABAARα1 in hippocampus in the Yudian Decoction group was reduced, the PV optical density value of hippocampal CA1 area was increased, the protein and mRNA expression of GAD67 in hippocampus area was elevated, and the protein expression of GAD65 in prefrontal cortex was reduced (P<0.05). ConclusionYudian Decoction may improve the pathological process of schizophrenia by regulating key regulators of glutamate/γ-aminobutyric acid (Glu/GABA) metabolic balance in the hippocampus and prefrontal cortex and maintaining the balance between neuronal excitation and inhibition.

6.
Chinese Journal of Neurology ; (12): 1051-1054, 2023.
Article in Chinese | WPRIM | ID: wpr-994931

ABSTRACT

Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a specific subtype of the stiff-person syndrome, which is rare and difficult to diagnose clinically. A case of PERM in a 66-year-old female with a fluctuating progressive course was reported in this article. She had increased facial muscle tone, pruritus and sensory hypersensitivity mainly in the head and neck, medullary involvement syndrome and bilateral lower limb rigidity as the main clinical manifestations, and a previous history of pulmonary malignancy, thymoma, typeⅠ diabetes and Hashimoto′s thyroiditis. The patient′s serum and cerebrospinal fluid were positive for anti-glutamic acid decarboxylase antibody. The electromyogram showed a large number of motor unit potentials in the trunk and proximal extremities in the quiet state, which were significantly enhanced during spastic episodes, consistent with the electromyographic manifestations of stiff-person syndrome. The final diagnosis was PERM, and immunotherapy including gamma globulin and hormone responded well. PERM is a rare neurological autoimmune disease with atypical early symptoms, which can be easily misdiagnosed, and it requires attention to avoid delaying the diagnosis.

7.
Chinese Journal of Anesthesiology ; (12): 809-813, 2023.
Article in Chinese | WPRIM | ID: wpr-994263

ABSTRACT

Objective:To evaluate the role of activation of vesicular glutamate transporter 2 (VGLUT2) neurons in vagal nodose ganglion in dexmedetomidine-caused bradycardia in mice.Methods:Ninety-six SPF healthy male VGLUT2-cre mice, aged 10 weeks, weighing 20-25 g, were divided into 6 groups ( n=16 each) by the random number table method: normal saline control group (NS group), dexmedetomidine group (Dex group), viral control + chemogenetic control + dexmedetomidine group (eGFP-NS+ Dex group), viral transfection + chemogenetic control + dexmedetomidine group (hM4Di-NS+ Dex group), viral control + chemogenetic inhibition + dexmedetomidine group (eGFP-CNO+ Dex group) and viral transfection + chemogenetic inhibition + dexmedetomidine group (hM4Di-CNO+ Dex group). Dexmedetomidine 100 μg/kg was intraperitoneally injected in Dex group. The equal volume of normal saline was intraperitoneally injected in NS group. AAV2/9-hSyn-DIO-hM4Di-eGFP was injected in the right nodose ganglion in hM4Di-NS+ Dex group and hM4Di-CNO+ Dex group, and AAV2/9-hSyn-DIO-eGFP was injected in the right nodose ganglion in eGFP-NS+ Dex group and eGFP-CNO+ Dex group, allowing the virus expression for 21 days. On the 22nd day after virus injection, clozapine-n-oxide (CNO) 5 mg/kg was intraperitoneally injected in hM4Di-CNO+ Dex group and eGFP-CNO+ Dex group, the equal volume of normal saline was intraperitoneally injected in hM4Di-NS+ Dex group and eGFP-NS+ Dex group, 1 h later the efficacy of CNO reached the peak, and then dexmedetomidine 100 μg/kg was intraperitoneally injected. The respiratory rate, heart rate, SpO 2 and discharge frequency of the right vagal nodose ganglion were synchronously measured by multi-channel electrophysiology in vivo. The expression of phosphorylated extracellular signal-regulated kinase (pERK) and VGLUT2 and co-expression of pERK and VGLUT2 in the right vagal nodose ganglion were detected by immunofluorescence assay. Results:Compared with NS group, the percentage of heart rate variation and neuron firing frequency after administration were significantly increased, and pERK expression was up-regulated in the other five groups ( P<0.05). Compared with Dex group, the percentage of heart rate variation and neuron firing frequency after administration were significantly decreased, and pERK expression was down-regulated in hM4Di-CNO+ Dex group, and no significant change was found in the parameters mentioned above in hM4Di-NS+ Dex group, eGFP-NS+ Dex group and eGFP-CNO+ Dex group ( P>0.05). Compared with hM4Di-CNO+ Dex group, the percentage of heart rate variation and neuron firing frequency after administration were significantly increased, and pERK expression was up-regulated in eGFP-CNO+ Dex group ( P<0.05). There was no significant difference in the percentage of respiratory variation and SpO 2 among the six groups ( P>0.05). The expression of VGLUT2-positive neurons was abundant in nodose ganglia, and the co-expression rate of pERK and VGLUT2 was nearly 90%. The co-expression rate of pERK and VGLUT2 decreased to about 30% after inhibition of VGLUT2 neurons in ganglion. Conclusions:The mechanism by which dexmedetomidine causes bradycardia is associated with activation of VGLUT2 neurons in vagal nodose ganglia in mice.

8.
Chinese Journal of Anesthesiology ; (12): 697-701, 2023.
Article in Chinese | WPRIM | ID: wpr-994247

ABSTRACT

Objective:To evaluate the role of Homer1a/metabotropic glutamate receptor 5 (mGluR5) signaling pathway in sleep deprivation-induced cognitive dysfunction in aged rats.Methods:One hundred and four SPF healthy male Sprague-Dawley rats, aged 22-24 months, weighing 320-360 g, were divided into 4 groups ( n=26 each) using a random number table method: normal control group (group Control), sleep deprivation+ vehicle group (group SD+ Vehicle), sleep deprivation+ mGluR5 forward allosteric agent CDPPB group (group SD+ CDPPB), and sleep deprivation+ mGluR5 antagonist MPEP group (group SD+ MPEP). A 48-h sleep deprivation model was developed by sleep-deprived rod method. At the beginning of developing the model and 24 h after developing the model, CDPPB 10 mg/kg, MPEP 10 mg/kg and the equal volume of 1% Tween 80 were intraperitoneally injected in group SD+ CDPPB, group SD+ MPEP and group SD+ Vehicle, respectively.Morris water maze and novel object recognition tests were conducted to evaluate cognitive function after development of the model. The expression of Homer1a and mGluR5 in the hippocampus was detected by Western blot, the dendritic spine density in the hippocampal CA1 region was detected by Golgi staining, and the field excitatory postsynaptic potential (fEPSP) slope in the hippocampal CA1 region was detected by isolated electrophysiology. Results:Compared with Control group, the number of crossing the original platform, time of staying at the target quadrant, and novel object recognition index at 1 and 24 h after training were significantly decreased, the expression of Homer1a in the hippocampus was up-regulated, the expression of mGluR5 in the hippocampus was down-regulated, and the density of dendritic spine and fEPSP slope in the hippocampal CA1 region were decreased in group SD+ Vehicle ( P<0.05). Compared with group SD+ Vehicle, the number of crossing the original platform, time of staying at target quadrant, and novel object recognition index at 1 and 24 h after training were significantly increased, the expression of mGluR5 in hippocampus was up-regulated, and the density of dendritic spines and fEPSP slope in the hippocampal CA1 region were increased in group SD+ MPEP( P<0.05), and no statistically significant change was found in the parameters mentioned above in group SD+ CDPPB ( P>0.05). Conclusions:Sleep deprivation impairs the synaptic plasticity of hippocampal neurons by regulating Homer1a/mGluR5 signaling pathway, and thus mediating the process of cognitive dysfunction in aged rats.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 27-35, 2023.
Article in Chinese | WPRIM | ID: wpr-964942

ABSTRACT

ObjectiveTo investigate the mechanism of Dihuang Yinzi in improving astrocyte injury and protecting synaptic structure and function in the brain of Alzheimer's disease (AD) mice. MethodForty male APP/PS1 transgenic mice aged four months were randomly divided into a model group and a model + Dihuang Yinzi (0.25 g·kg-1) group, with 20 mice in each group. Forty C57BL/6J mice with the same background and same age were randomly divided into a control group and a control + Dihuang Yinzi (0.25 g·kg-1) group, with 20 mice in each group. The mice in the control + Dihuang Yinzi group and the model + Dihuang Yinzi group were administered with Dihuang Yinzi by gavage, and those in the control group and the model group received an equal volume of sterilized normal saline, once a day for 150 days. The learning and memory ability of mice was tested by the light-dark box test and Y-maze spontaneous alternation test. The content of glutamate (Glu) and glutamine (Gln) was measured by liquid chromatography-tandem mass spectrometry (LC-MS). Long-term potentiation (LTP) assay was used to detect synaptic plasticity in brain tissues. The protein expression levels of excitatory amino acid transporter 2 (EAAT2), postsynaptic density protein95 (PSD95), and synaptophysin (SYN) in brain tissues were measured by Western blot. Immunofluorescence was used to assess the localization and expression of EAAT2. Colorimetry was performed to detect Na+-K+ ATPase activity in mouse brain tissues. ResultAs compared with the control group, the model group showed shortened residence latency (P<0.01), increased number of errors (P<0.01) in the light-dark box test, reduced spontaneous alternation behaviors (P<0.01), no significant difference in the total number of arm entries in the Y-maze spontaneous alternation test, down-regulated expression of EAAT2, PSD95, and SYN (P<0.01), blunted activity of Na+-K+ ATPase (P<0.01), up-regulated Glu level (P<0.01), down-regulated Gln level (P<0.01), and reduced relative population spike (PS) amplitude and the slope of excitatory postsynaptic potential (EPSP) (P<0.05, P<0.01), while the above experimental indexes were not significantly different in the control + Dihuang Yinzi group. Compared with the model group, the model + Dihuang Yinzi group displayed prolonged residence latency (P<0.05), decreased number of errors (P<0.01) in the light-dark box test, increased spontaneous alternation behaviors (P<0.01), no significant difference in the total number of arm entries in the Y-maze spontaneous alternation test, up-regulated expression of EAAT2, PSD95, and SYN (P<0.01), potentiated activity of Na+-K+ ATPase (P<0.01), reduced Glu level (P<0.01), up-regulated Gln level (P<0.01), and increased PS amplitude and EPSP slope (P<0.01). ConclusionDihuang Yinzi can improve cognitive dysfunction in AD mice by protecting astrocytes, increasing Glu uptake to reduce its abnormal accumulation, and protecting synaptic structure and function.

10.
Acta Pharmaceutica Sinica B ; (6): 3008-3026, 2023.
Article in English | WPRIM | ID: wpr-982902

ABSTRACT

Many efforts have been made to understand excitotoxicity and develop neuroprotectants for the therapy of ischemic stroke. The narrow treatment time window is still to be solved. Given that the ischemic core expanded over days, treatment with an extended time window is anticipated. Bestrophin 1 (BEST1) belongs to a bestrophin family of calcium-activated chloride channels. We revealed an increase in neuronal BEST1 expression and function within the peri-infarct from 8 to 48 h after ischemic stroke in mice. Interfering the protein expression or inhibiting the channel function of BEST1 by genetic manipulation displayed neuroprotective effects and improved motor functional deficits. Using electrophysiological recordings, we demonstrated that extrasynaptic glutamate release through BEST1 channel resulted in delayed excitotoxicity. Finally, we confirmed the therapeutic efficacy of pharmacological inhibition of BEST1 during 6-72 h post-ischemia in rodents. This delayed treatment prevented the expansion of infarct volume and the exacerbation of neurological functions. Our study identifies the glutamate-releasing BEST1 channel as a potential therapeutic target against ischemic stroke with a wide time window.

11.
Braz. j. med. biol. res ; 56: e12549, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1430023

ABSTRACT

Chronic intermittent hypoxia (CIH), a component of sleep apnea-hypopnea syndrome, is suggested to cause damage to lung tissue, and the role of glutamate is not well studied. We used a chronic long-term intermittent hypobaric hypoxia (CLTIHH) model of rats to find out if such procedure causes lung injury and the potential effect of N-methyl-D-aspartate receptors (NMDARs) by using receptor antagonist MK-801 (dizocilpine). Thirty-two rats were placed into four groups; a control and three CLTIHH groups where rats were placed into a low-pressure chamber set to 430 mmHg for 5 h/day, 5 days/week, for 5 weeks. Only one group received MK-801 (0.3 mg/kg, ip) daily. We evaluated tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and nuclear factor (NF)-kB for the inflammatory process, superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPX), total antioxidant status (TAS), and total oxidant status (TOS) for oxidative stress, and caspase-9 levels. Blood plasma, bronchoalveolar fluid (BALF), and lung tissue extracts were evaluated. Both oxidant and inflammatory parameters were significantly increased in all the mediums of the CLTIHH groups except the group that received MK-801. Significant evidence was collected on MK-801 alleviating the effect of CLTIHH. Histological evaluations revealed lung damage and fibrotic changes in the CLTIHH groups. It was first shown that the CLTIHH procedure caused chronic lung injury, and that inflammation and oxidant stress were influential in the formation of lung injury. Secondly, NMDAR antagonist MK-801 effectively inhibited the development of lung injury and fibrosis.

12.
Int. j. morphol ; 40(3): 697-705, jun. 2022. ilus, tab
Article in English | LILACS | ID: biblio-1385688

ABSTRACT

SUMMARY: An association between certain food additives and chronic diseases is reported. Current study determined whether administering toxic doses of the food additive monosodium glutamate (MSG) into rats can induce aortopathy in association with the oxidative stress and inflammatory biomarkers upregulation and whether the effects of MSG overdose can be inhibited by vitamin E. MSG at a dose of (4 mg/kg; orally) that exceeds the average human daily consumption by 1000x was administered daily for 7 days to the rats in the model group. Whereas, rats treated with vitamin E were divided into two groups and given daily doses of MSG plus 100 mg/ kg vitamin E or MSG plus 300 mg/kg vitamin E. On the eighth day, all rats were culled. Using light and electron microscopy examinations, a profound aortic injury in the model group was observed demonstrated by damaged endothelial layer, degenerated smooth muscle cells (SMC) with vacuoles and condensed nuclei, vacuolated cytoplasm, disrupted plasma membrane, interrupted internal elastic lamina, clumped chromatin, and damaged actin and myosin filaments. Vitamin E significantly protected aorta tissue and cells as well as inhibited MSG-induced tissue malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). The highest used vitamin E dosage was more effective. Additionally, a significant correlation was observed between the aortic injury degree and tissue MDA, TNF-α, IL-6, and superoxide dismutase (SOD) levels (p=0.001). Vitamin E effectively protects against aortopathy induced by toxic doses of MSG in rats and inhibits oxidative stress and inflammation.


RESUMEN: Se reporta una asociación entre ciertos aditivos alimentarios y enfermedades crónicas. El objetivo de este estudio fue determinar si la administración de dosis tóxicas del aditivo alimentario glutamato monosódico (MSG) en ratas puede inducir aortopatía en asociación con el estrés oxidativo y la regulación positiva de los biomarcadores inflamatorios y si el efecto de una sobredosis de MSG se puede inhibir con vitamina E. Se administró MSG diariamente durante 7 días una dosis de (4 g/kg; por vía oral) que excede el consumo diario humano promedio, en 1000x a las ratas del grupo modelo. Mientras que las ratas tratadas con vitamina E se dividieron en dos grupos y se administraron dosis diarias de MSG más 100 mg/kg de vitamina E o MSG más 300 mg/kg de vitamina E. Todas las ratas fueron sacrificadas en el octavo día. Usando exámenes de microscopía óptica y electrónica, se observó una lesión aórtica profunda en el grupo modelo demostrada por una capa endotelial dañada, células musculares lisas degeneradas (SMC) con vacuolas y núcleos condensados, citoplasma vacuolado, membrana plasmática rota, lámina elástica interna interrumpida, cromatina agrupada y filamentos de actina y miosina dañados. La vitamina E protegió significativamente el tejido y las células de la aorta, además de inhibir el malondialdehído tisular (MDA) inducido por MSG, la interleucina-6 (IL-6) y el factor de necrosis tumoral alfa (TNF-α). La dosis más alta de vitamina E utilizada fue más efectiva. Además, se observó una correlación significativa entre el grado de lesión aórtica y los niveles tisulares de MDA, TNF-α, IL-6 y superóxido dismutasa (SOD) (p=0,001). La vitamina E efectivamente protege contra la aortopatía inducida por dosis tóxicas de MSG en ratas e inhibe el estrés oxidativo y la inflamación.


Subject(s)
Animals , Rats , Aorta/drug effects , Aortic Diseases/chemically induced , Sodium Glutamate/toxicity , Vitamin E/pharmacology , Aorta/pathology , Sodium Glutamate/administration & dosage , Vitamin E/administration & dosage , Microscopy, Electron , Interleukin-6/antagonists & inhibitors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Disease Models, Animal , Malondialdehyde/antagonists & inhibitors
13.
Biol. Res ; 55: 18-18, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1383920

ABSTRACT

Abstract Background: Glutamate and voltage-gated sodium channels, both have been the target of intense investigation for its involvement in carcinogenesis and progression of malignant disease. Breast cancer with increased level of glutamate often metastasize to other organs (especially bone), whilst re-expression of 'neonatal' Nav1.5, nNav1.5 in breast cancer is known to promote cell invasion in vitro, metastasis in vivo and positive lymph node metastasis in patients. Methods: In this study, the role of nNav1.5 in regulating glutamate level in human breast cancer cells was examined using pharmacological approach (VGSCs specific blocker, TTX, glutamate release inhibitor, riluzole and siRNA-nNav1.5). Effect of these agents were evaluated based on endogenous and exogenous glutamate concentration using glutamate fluorometric assay, mRNA expression of nNav1.5 using qPCR and finally, invasion using 3D culture assay. Results: Endogenous and exogenous glutamate levels were significantly higher in aggressive human breast cancer cells, MDA-MB-231 cells compared to less aggressive human breast cancer cells, MCF-7 and non-cancerous human breast epithelial cells, MCF-10A. Treatment with TTX to MDA-MB-231 cells resulted in significant reduction of endogenous and exogenous glutamate levels corresponded with significant suppression of cell invasion. Subsequently, downregulation of nNav1.5 gene was observed in TTX-treated cells. Conclusions: An interesting link between nNav1.5 expression and glutamate level in aggressive breast cancer cells was detected and requires further investigation.


Subject(s)
Humans , Female , Infant, Newborn , Breast Neoplasms/genetics , Glutamic Acid , RNA, Small Interfering , Cell Line, Tumor , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism
14.
Neuroscience Bulletin ; (6): 1-15, 2022.
Article in English | WPRIM | ID: wpr-922671

ABSTRACT

Parkinson's disease (PD) is the second most common and fastest-growing neurodegenerative disorder. In recent years, it has been recognized that neurotransmitters other than dopamine and neuronal systems outside the basal ganglia are also related to PD pathogenesis. However, little is known about whether and how the caudal zona incerta (ZIc) regulates parkinsonian motor symptoms. Here, we showed that specific glutamatergic but not GABAergic ZIc


Subject(s)
Animals , Mice , Neurons , Parkinson Disease , Parkinsonian Disorders , Substantia Nigra , Zona Incerta
15.
Chinese Journal of Anesthesiology ; (12): 269-273, 2022.
Article in Chinese | WPRIM | ID: wpr-933329

ABSTRACT

Objective:To evaluate the role of glutamate receptor 2 (GluR2) in cognitive dysfunction induced by chronic neuroinflammation in mice.Methods:Sixty adult male C57BL/6 mice, aged 8-10 weeks, weighing 18-25 g, were divided into 4 groups ( n=15 each) using a random number table method: control + dimethyl sulfoxide (DMSO) group (group C+ DMSO), control + AMPA receptor selective non-competitive antagonist CFM-2 group (group C+ CFM-2), lipopolysaccharide (LPS)+ DMSO group and LPS + CFM-2 group.In C+ DMSO group and C+ CFM-2 group, normal saline 0.2 ml was intraperitoneally injected every day for 10 consecutive days, and 10% DMSO 0.165 ml and CFM-2 33 μmol/kg (diluted to 0.165 ml with 10% DMSO) were intraperitoneally injected, respectively, on the 10th day after injection of normal saline.In LPS + DMSO group and LPS + CFM-2 group, LPS 0.5 mg/kg (diluted to 0.2 ml with normal saline) was intraperitoneally injected every day for 10 consecutive days, and 10% DMSO 0.165 ml and CFM-2 33 μmol/kg (diluted to 0.165 ml with 10% DMSO) were intraperitoneally injected, respectively, after LPS injection on the 10th day.The Y-maze test was performed at 48 h after the end of administration, then the animals were sacrificed, and the hippocampal tissues were taken for determination of the expression of GluR2, ionized calcium binding adapter molecule 1 (Iba1), tumor necrosis factor-α (TNF-α) (by Western blot) and the number of microglia in hippocampal CA1 area (by immunofluorescence). Results:Compared with group C + DMSO, the percentage of spontaneous alternation was significantly decreased, the expression of GluR2, Iba1 and TNF-α in hippocampus was up-regulated, the number of microglia in hippocampal CA1 area was increased ( P<0.05), and no significant change was found in the parameters mentioned above in group LPS + DMSO ( P>0.05). Compared with group LPS + DMSO, the percentage of spontaneous alternation was significantly increased, the expression of GluR2, Iba1 and TNF-α in hippocampus was down-regulated, and the number of microglia in hippocampal CA1 area was decreased in group LPS+ CFM-2 ( P<0.05). Conclusions:GluR2 is involved in chronic neuroinflammation-induced cognitive dysfunction through activation of microglia in mice.

16.
Chinese Critical Care Medicine ; (12): 280-283, 2022.
Article in Chinese | WPRIM | ID: wpr-931864

ABSTRACT

Objective:To study the effects of trioxygen pretreatment on cerebral ischemia/reperfusion (I/R) injury in rats.Methods:A total of 24 clean grade male Sprague-Dawley (SD) rats were randomly divided into Sham group, brain I/R group (I/R group) and Ozone pretreatment group (Ozone group), with 8 rats in each group. The animals were routinely fed, and the operation was performed 5 days after the intervention of Ozone group by intraperitoneal injection of trioxygen water (concentration 80 mg/L, 0.01 mL/g), and the Sham group and I/R group were injected with equal volume normal saline. The Sham group only separated the arteries without ligation, and the I/R group and Ozone group established the rat cerebral I/R model. Neurological deficit score (NDS) was performed 2 hours after ischemia and modified neurological deficit score (mNSS) was performed 24 hours after reperfusion. Brain tissue was collected after anesthesia. Cerebral infarction was observed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the percentage of cerebral infarction volume was calculated. Protein expression of metabolic glutamate receptor 5 (mGluR5) and ionic glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluA2 in cerebral ischemic penumbra was determined by Western blotting.Results:Compared with the Sham group, NDS score, mNSS score and percentage of cerebral infarction volume in I/R group were increased [NDS score: 2.63±0.52 vs. 0, mNSS score: 9.63±1.19 vs. 1.13±0.64, cerebral infarction volume: (41.25±2.93)% vs. 0%, all P < 0.05], and expressions of mGluR5 and GluA2 in penumbra area of cerebral ischemia were decreased [mGluR5 protein (mGluR5/β-actin): 0.44±0.14 vs. 1.00±0.10, GluA2 protein (GluA2/β-actin): 0.23±0.08 vs. 1.00±0.25, both P < 0.05]. Compared with the I/R group, mNSS score and percentage of cerebral infarction volume in the Ozone group were decreased [mNSS score: 7.00±1.20 vs. 9.63±1.19, cerebral infarction volume: (27.23±6.21)% vs. (41.25±2.93)%, both P < 0.05], and mGluR5 and GluA2 expressions in the penumbra of cerebral ischemia were up-regulated [mGluR5 protein (mGluR5/β-actin): 0.81±0.10 vs. 0.44±0.14, GluA2 protein (GluA2/β-actin): 0.76±0.13 vs. 0.23±0.08, both P < 0.05]. Conclusion:Trioxygen preconditioning can alleviate cerebral I/R injury in rats, and its mechanism may be related to the upregulation of GluR5 and GluA2 in the ischemic penumbra.

17.
Acta Pharmaceutica Sinica ; (12): 1621-1629, 2022.
Article in Chinese | WPRIM | ID: wpr-929457

ABSTRACT

Cystine/glutamate antiporter [system Xc(-)] is a sodium independent amino acid transporter, which is a heterodimer composed of light chain subunit xCT and heavy chain subunit 4F2hc (CD98) through covalent disulfide bond. System Xc(-) typically mediates cystine uptake and glutamate output, helps to maintain the balance of glutamate, cystine and cysteine inside and outside the cell, regulates the level of glutamate inside and outside the membrane and the synthesis of intracellular glutathione, thus affecting oxidative stress and glutamate neurotoxicity. This review expounds the structure and function of system Xc(-), analyzes the role of the transporter in physiology and pathology, discusses the role and mechanism in different diseases, and discusses the specific research progress of system Xc(-) as a drug target. This review summarizes the research status of system Xc(-) and provides theoretical guidance for further research on system Xc(-) and drug discovery.

18.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 658-663, 2022.
Article in Chinese | WPRIM | ID: wpr-956140

ABSTRACT

Fear memories are temporarily suppressed after repeated retrieval, a phenomenon known as memory extinction.How to reduce or even eliminate fear memory is the key to the treatment of fear related diseases such as post-traumatic stress disorder(PTSD). A single extinction training based on Pavlov's fear regulation task could only inhibit the expression of conditioned fear memory traces, but it could not eliminate the acquired conditioned fear memory. However, according to the reconsolidation theory based on memory, the retrieval-extinction paradigm has a more lasting effect on the erasure and rewriting of fear memory, and can effectively prevent the return of fear memory. Studies have shown that extraction-regression is closely related to a variety of neurotransmitter receptors such as glutamate receptor(GluR), dopamine receptor(DAR), L-type voltage-gated calcium channels(LVGCs) and cannabinoid. Moreover, its effect is closely related with factors such as retrieval-extinction memory stage. At present, most of the researches on extracted boundary conditions only stay at the level of behavior, with little understanding and exploration on the level of molecular mechanism. From the perspective of molecular neurobiology, with different stages of memory and different types of receptors and molecular mechanisms, this research reviewed the mechanisms of retrieval-extinction in recent years.It provided valuable signaling pathways, molecular targets and research directions for the treatment of fear-related diseases such as PTSD.

19.
Journal of Zhejiang University. Medical sciences ; (6): 707-715, 2022.
Article in English | WPRIM | ID: wpr-971088

ABSTRACT

OBJECTIVE@#To investigate the underlying molecular mechanisms by which silence information regulator (SIRT) 2 and glutaminase (GLS) in the amygdala regulate social behaviors in autistic rats.@*METHODS@#Rat models of autism were established by maternal sodium valproic acid (VPA) exposure in wild-type rats and SIRT2-knockout ( SIRT2 -/-) rats. Glutamate (Glu) content, brain weight, and expression levels of SIRT2, GLS proteins and apoptosis-associated proteins in rat amygdala at different developmental stages were examined, and the social behaviors of VPA rats were assessed by a three-chamber test. Then, lentiviral overexpression or interference vectors of GLS were injected into the amygdala of VPA rats. Brain weight, Glu content and expression level of GLS protein were measured, and the social behaviors assessed.@*RESULTS@#Brain weight, amygdala Glu content and the levels of SIRT2, GLS protein and pro-apoptotic protein caspase-3 in the amygdala were increased in VPA rats, while the level of anti-apoptotic protein Bcl-2 was decreased (all P<0.01). Compared with the wild-type rats, SIRT2 -/- rats displayed decreased expression of SIRT2 and GLS proteins in the amygdala, reduced Glu content, and improved social dysfunction (all P<0.01). Overexpression of GLS increased brain weight and Glu content, and aggravated social dysfunction in VPA rats (all P<0.01). Knockdown of GLS decreased brain weight and Glu content, and improved social dysfunction in VPA rats (all P<0.01).@*CONCLUSIONS@#The glutamate circulatory system in the amygdala of VPA induced autistic rats is abnormal. This is associated with the upregulation of SIRT2 expression and its induced increase of GLS production; knocking out SIRT2 gene or inhibiting the expression of GLS is helpful in maintaining the balanced glutamate cycle and in improving the social behavior disorder of rats.


Subject(s)
Animals , Rats , Amygdala/metabolism , Autistic Disorder/metabolism , Behavior, Animal , Disease Models, Animal , Glutamates/metabolism , Glutaminase/metabolism , Sirtuin 2/metabolism , Social Behavior
20.
Chinese Journal of Neurology ; (12): 1407-1412, 2022.
Article in Chinese | WPRIM | ID: wpr-958045

ABSTRACT

Autoimmune cerebellar ataxia (ACA) is a cerebellar syndrome mediated by autoimmune mechanisms, and ACA with positive anti-Homer3 antibody is very rare. This article reports a 55-year-old male patient admitted to Qilu Hospital, Shandong University, due to dizziness and walking instability for 22 days. The serum and cerebrospinal fluid showed positive results for anti-Homer3 antibody, and the symptoms improved after intravenous immunoglobulin combined with hormone therapy. Based on the review of the case data and relevant literature reports, the pathogenesis, clinical manifestations, auxiliary examination, treatment and prognosis of ACA with positive anti-Homer3 antibody are analyzed, so as to deepen the understanding of clinicians and improve the diagnosis and treatment level.

SELECTION OF CITATIONS
SEARCH DETAIL